\(\int \frac {(a+a \cos (c+d x))^2 (A+B \cos (c+d x))}{\sqrt {\sec (c+d x)}} \, dx\) [469]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [A] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 33, antiderivative size = 201 \[ \int \frac {(a+a \cos (c+d x))^2 (A+B \cos (c+d x))}{\sqrt {\sec (c+d x)}} \, dx=\frac {4 a^2 (4 A+3 B) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{5 d}+\frac {4 a^2 (7 A+6 B) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{21 d}+\frac {2 a^2 (7 A+9 B) \sin (c+d x)}{35 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {4 a^2 (7 A+6 B) \sin (c+d x)}{21 d \sqrt {\sec (c+d x)}}+\frac {2 B \left (a^2+a^2 \sec (c+d x)\right ) \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)} \]

[Out]

2/35*a^2*(7*A+9*B)*sin(d*x+c)/d/sec(d*x+c)^(3/2)+2/7*B*(a^2+a^2*sec(d*x+c))*sin(d*x+c)/d/sec(d*x+c)^(5/2)+4/21
*a^2*(7*A+6*B)*sin(d*x+c)/d/sec(d*x+c)^(1/2)+4/5*a^2*(4*A+3*B)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)
*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/d+4/21*a^2*(7*A+6*B)*(cos(1/2*d*x+1/2
*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/d

Rubi [A] (verified)

Time = 0.38 (sec) , antiderivative size = 201, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.242, Rules used = {3039, 4102, 4081, 3872, 3854, 3856, 2720, 2719} \[ \int \frac {(a+a \cos (c+d x))^2 (A+B \cos (c+d x))}{\sqrt {\sec (c+d x)}} \, dx=\frac {2 a^2 (7 A+9 B) \sin (c+d x)}{35 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {4 a^2 (7 A+6 B) \sin (c+d x)}{21 d \sqrt {\sec (c+d x)}}+\frac {4 a^2 (7 A+6 B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{21 d}+\frac {4 a^2 (4 A+3 B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {2 B \sin (c+d x) \left (a^2 \sec (c+d x)+a^2\right )}{7 d \sec ^{\frac {5}{2}}(c+d x)} \]

[In]

Int[((a + a*Cos[c + d*x])^2*(A + B*Cos[c + d*x]))/Sqrt[Sec[c + d*x]],x]

[Out]

(4*a^2*(4*A + 3*B)*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(5*d) + (4*a^2*(7*A + 6*B)
*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(21*d) + (2*a^2*(7*A + 9*B)*Sin[c + d*x])/(3
5*d*Sec[c + d*x]^(3/2)) + (4*a^2*(7*A + 6*B)*Sin[c + d*x])/(21*d*Sqrt[Sec[c + d*x]]) + (2*B*(a^2 + a^2*Sec[c +
 d*x])*Sin[c + d*x])/(7*d*Sec[c + d*x]^(5/2))

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 3039

Int[(csc[(e_.) + (f_.)*(x_)]*(g_.))^(p_.)*((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_) + (d_.)*sin[(e_.
) + (f_.)*(x_)])^(n_.), x_Symbol] :> Dist[g^(m + n), Int[(g*Csc[e + f*x])^(p - m - n)*(b + a*Csc[e + f*x])^m*(
d + c*Csc[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] && NeQ[b*c - a*d, 0] &&  !IntegerQ[p] && I
ntegerQ[m] && IntegerQ[n]

Rule 3854

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[Cos[c + d*x]*((b*Csc[c + d*x])^(n + 1)/(b*d*n)), x
] + Dist[(n + 1)/(b^2*n), Int[(b*Csc[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1] && Integer
Q[2*n]

Rule 3856

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 3872

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Dist[a, Int[(d*
Csc[e + f*x])^n, x], x] + Dist[b/d, Int[(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, n}, x]

Rule 4081

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))*(csc[(e_.) + (f_.)*(x_)]*(B_.)
 + (A_)), x_Symbol] :> Simp[A*a*Cot[e + f*x]*((d*Csc[e + f*x])^n/(f*n)), x] + Dist[1/(d*n), Int[(d*Csc[e + f*x
])^(n + 1)*Simp[n*(B*a + A*b) + (B*b*n + A*a*(n + 1))*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, B},
 x] && NeQ[A*b - a*B, 0] && LeQ[n, -1]

Rule 4102

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> Simp[a*A*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m - 1)*((d*Csc[e + f*x])^n/(f*n)), x]
- Dist[b/(a*d*n), Int[(a + b*Csc[e + f*x])^(m - 1)*(d*Csc[e + f*x])^(n + 1)*Simp[a*A*(m - n - 1) - b*B*n - (a*
B*n + A*b*(m + n))*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, B}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2
 - b^2, 0] && GtQ[m, 1/2] && LtQ[n, -1]

Rubi steps \begin{align*} \text {integral}& = \int \frac {(a+a \sec (c+d x))^2 (B+A \sec (c+d x))}{\sec ^{\frac {7}{2}}(c+d x)} \, dx \\ & = \frac {2 B \left (a^2+a^2 \sec (c+d x)\right ) \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}+\frac {2}{7} \int \frac {(a+a \sec (c+d x)) \left (\frac {1}{2} a (7 A+9 B)+\frac {1}{2} a (7 A+3 B) \sec (c+d x)\right )}{\sec ^{\frac {5}{2}}(c+d x)} \, dx \\ & = \frac {2 a^2 (7 A+9 B) \sin (c+d x)}{35 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {2 B \left (a^2+a^2 \sec (c+d x)\right ) \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}-\frac {4}{35} \int \frac {-\frac {5}{2} a^2 (7 A+6 B)-\frac {7}{2} a^2 (4 A+3 B) \sec (c+d x)}{\sec ^{\frac {3}{2}}(c+d x)} \, dx \\ & = \frac {2 a^2 (7 A+9 B) \sin (c+d x)}{35 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {2 B \left (a^2+a^2 \sec (c+d x)\right ) \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}+\frac {1}{5} \left (2 a^2 (4 A+3 B)\right ) \int \frac {1}{\sqrt {\sec (c+d x)}} \, dx+\frac {1}{7} \left (2 a^2 (7 A+6 B)\right ) \int \frac {1}{\sec ^{\frac {3}{2}}(c+d x)} \, dx \\ & = \frac {2 a^2 (7 A+9 B) \sin (c+d x)}{35 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {4 a^2 (7 A+6 B) \sin (c+d x)}{21 d \sqrt {\sec (c+d x)}}+\frac {2 B \left (a^2+a^2 \sec (c+d x)\right ) \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}+\frac {1}{21} \left (2 a^2 (7 A+6 B)\right ) \int \sqrt {\sec (c+d x)} \, dx+\frac {1}{5} \left (2 a^2 (4 A+3 B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \sqrt {\cos (c+d x)} \, dx \\ & = \frac {4 a^2 (4 A+3 B) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{5 d}+\frac {2 a^2 (7 A+9 B) \sin (c+d x)}{35 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {4 a^2 (7 A+6 B) \sin (c+d x)}{21 d \sqrt {\sec (c+d x)}}+\frac {2 B \left (a^2+a^2 \sec (c+d x)\right ) \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}+\frac {1}{21} \left (2 a^2 (7 A+6 B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx \\ & = \frac {4 a^2 (4 A+3 B) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{5 d}+\frac {4 a^2 (7 A+6 B) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{21 d}+\frac {2 a^2 (7 A+9 B) \sin (c+d x)}{35 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {4 a^2 (7 A+6 B) \sin (c+d x)}{21 d \sqrt {\sec (c+d x)}}+\frac {2 B \left (a^2+a^2 \sec (c+d x)\right ) \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)} \\ \end{align*}

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 2.77 (sec) , antiderivative size = 193, normalized size of antiderivative = 0.96 \[ \int \frac {(a+a \cos (c+d x))^2 (A+B \cos (c+d x))}{\sqrt {\sec (c+d x)}} \, dx=\frac {a^2 e^{-i d x} \sqrt {\sec (c+d x)} (\cos (d x)+i \sin (d x)) \left (40 (7 A+6 B) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )-56 i (4 A+3 B) e^{i (c+d x)} \sqrt {1+e^{2 i (c+d x)}} \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {3}{4},\frac {7}{4},-e^{2 i (c+d x)}\right )+\cos (c+d x) (672 i A+504 i B+5 (56 A+51 B) \sin (c+d x)+42 (A+2 B) \sin (2 (c+d x))+15 B \sin (3 (c+d x)))\right )}{210 d} \]

[In]

Integrate[((a + a*Cos[c + d*x])^2*(A + B*Cos[c + d*x]))/Sqrt[Sec[c + d*x]],x]

[Out]

(a^2*Sqrt[Sec[c + d*x]]*(Cos[d*x] + I*Sin[d*x])*(40*(7*A + 6*B)*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2] -
 (56*I)*(4*A + 3*B)*E^(I*(c + d*x))*Sqrt[1 + E^((2*I)*(c + d*x))]*Hypergeometric2F1[1/2, 3/4, 7/4, -E^((2*I)*(
c + d*x))] + Cos[c + d*x]*((672*I)*A + (504*I)*B + 5*(56*A + 51*B)*Sin[c + d*x] + 42*(A + 2*B)*Sin[2*(c + d*x)
] + 15*B*Sin[3*(c + d*x)])))/(210*d*E^(I*d*x))

Maple [A] (verified)

Time = 12.98 (sec) , antiderivative size = 385, normalized size of antiderivative = 1.92

method result size
default \(-\frac {4 \sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, a^{2} \left (120 B \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin ^{8}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\left (-84 A -348 B \right ) \left (\sin ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\left (224 A +378 B \right ) \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\left (-91 A -117 B \right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+35 A \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-84 A \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+30 B \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-63 B \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{105 \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d}\) \(385\)
parts \(\text {Expression too large to display}\) \(743\)

[In]

int((a+cos(d*x+c)*a)^2*(A+B*cos(d*x+c))/sec(d*x+c)^(1/2),x,method=_RETURNVERBOSE)

[Out]

-4/105*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^2*(120*B*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c
)^8+(-84*A-348*B)*sin(1/2*d*x+1/2*c)^6*cos(1/2*d*x+1/2*c)+(224*A+378*B)*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*x+1/2*c
)+(-91*A-117*B)*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)+35*A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c
)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-84*A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1
)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))+30*B*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/
2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-63*B*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*El
lipticE(cos(1/2*d*x+1/2*c),2^(1/2)))/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(
2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.10 (sec) , antiderivative size = 211, normalized size of antiderivative = 1.05 \[ \int \frac {(a+a \cos (c+d x))^2 (A+B \cos (c+d x))}{\sqrt {\sec (c+d x)}} \, dx=-\frac {2 \, {\left (5 i \, \sqrt {2} {\left (7 \, A + 6 \, B\right )} a^{2} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) - 5 i \, \sqrt {2} {\left (7 \, A + 6 \, B\right )} a^{2} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - 21 i \, \sqrt {2} {\left (4 \, A + 3 \, B\right )} a^{2} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + 21 i \, \sqrt {2} {\left (4 \, A + 3 \, B\right )} a^{2} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) - \frac {{\left (15 \, B a^{2} \cos \left (d x + c\right )^{3} + 21 \, {\left (A + 2 \, B\right )} a^{2} \cos \left (d x + c\right )^{2} + 10 \, {\left (7 \, A + 6 \, B\right )} a^{2} \cos \left (d x + c\right )\right )} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}\right )}}{105 \, d} \]

[In]

integrate((a+a*cos(d*x+c))^2*(A+B*cos(d*x+c))/sec(d*x+c)^(1/2),x, algorithm="fricas")

[Out]

-2/105*(5*I*sqrt(2)*(7*A + 6*B)*a^2*weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c)) - 5*I*sqrt(2)*(7
*A + 6*B)*a^2*weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) - 21*I*sqrt(2)*(4*A + 3*B)*a^2*weierst
rassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) + 21*I*sqrt(2)*(4*A + 3*B)*a^2*weie
rstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c))) - (15*B*a^2*cos(d*x + c)^3 + 21*
(A + 2*B)*a^2*cos(d*x + c)^2 + 10*(7*A + 6*B)*a^2*cos(d*x + c))*sin(d*x + c)/sqrt(cos(d*x + c)))/d

Sympy [F]

\[ \int \frac {(a+a \cos (c+d x))^2 (A+B \cos (c+d x))}{\sqrt {\sec (c+d x)}} \, dx=a^{2} \left (\int \frac {A}{\sqrt {\sec {\left (c + d x \right )}}}\, dx + \int \frac {2 A \cos {\left (c + d x \right )}}{\sqrt {\sec {\left (c + d x \right )}}}\, dx + \int \frac {A \cos ^{2}{\left (c + d x \right )}}{\sqrt {\sec {\left (c + d x \right )}}}\, dx + \int \frac {B \cos {\left (c + d x \right )}}{\sqrt {\sec {\left (c + d x \right )}}}\, dx + \int \frac {2 B \cos ^{2}{\left (c + d x \right )}}{\sqrt {\sec {\left (c + d x \right )}}}\, dx + \int \frac {B \cos ^{3}{\left (c + d x \right )}}{\sqrt {\sec {\left (c + d x \right )}}}\, dx\right ) \]

[In]

integrate((a+a*cos(d*x+c))**2*(A+B*cos(d*x+c))/sec(d*x+c)**(1/2),x)

[Out]

a**2*(Integral(A/sqrt(sec(c + d*x)), x) + Integral(2*A*cos(c + d*x)/sqrt(sec(c + d*x)), x) + Integral(A*cos(c
+ d*x)**2/sqrt(sec(c + d*x)), x) + Integral(B*cos(c + d*x)/sqrt(sec(c + d*x)), x) + Integral(2*B*cos(c + d*x)*
*2/sqrt(sec(c + d*x)), x) + Integral(B*cos(c + d*x)**3/sqrt(sec(c + d*x)), x))

Maxima [F]

\[ \int \frac {(a+a \cos (c+d x))^2 (A+B \cos (c+d x))}{\sqrt {\sec (c+d x)}} \, dx=\int { \frac {{\left (B \cos \left (d x + c\right ) + A\right )} {\left (a \cos \left (d x + c\right ) + a\right )}^{2}}{\sqrt {\sec \left (d x + c\right )}} \,d x } \]

[In]

integrate((a+a*cos(d*x+c))^2*(A+B*cos(d*x+c))/sec(d*x+c)^(1/2),x, algorithm="maxima")

[Out]

integrate((B*cos(d*x + c) + A)*(a*cos(d*x + c) + a)^2/sqrt(sec(d*x + c)), x)

Giac [F]

\[ \int \frac {(a+a \cos (c+d x))^2 (A+B \cos (c+d x))}{\sqrt {\sec (c+d x)}} \, dx=\int { \frac {{\left (B \cos \left (d x + c\right ) + A\right )} {\left (a \cos \left (d x + c\right ) + a\right )}^{2}}{\sqrt {\sec \left (d x + c\right )}} \,d x } \]

[In]

integrate((a+a*cos(d*x+c))^2*(A+B*cos(d*x+c))/sec(d*x+c)^(1/2),x, algorithm="giac")

[Out]

integrate((B*cos(d*x + c) + A)*(a*cos(d*x + c) + a)^2/sqrt(sec(d*x + c)), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {(a+a \cos (c+d x))^2 (A+B \cos (c+d x))}{\sqrt {\sec (c+d x)}} \, dx=\int \frac {\left (A+B\,\cos \left (c+d\,x\right )\right )\,{\left (a+a\,\cos \left (c+d\,x\right )\right )}^2}{\sqrt {\frac {1}{\cos \left (c+d\,x\right )}}} \,d x \]

[In]

int(((A + B*cos(c + d*x))*(a + a*cos(c + d*x))^2)/(1/cos(c + d*x))^(1/2),x)

[Out]

int(((A + B*cos(c + d*x))*(a + a*cos(c + d*x))^2)/(1/cos(c + d*x))^(1/2), x)